$[0(a)]$

$$
\frac{dy}{dx} = y^{2/3}, \quad y(\circ) = 2 \quad \text{d} \quad (x_0, y_0) = (0, 2)
$$

Here
$$
f(x,y) = y
$$

\n
$$
\frac{\partial f}{\partial y} = \frac{2}{3}y^{-1/3} = \frac{2}{3} \cdot \frac{1}{y^{1/3}}
$$

Note that f is continuous
everywhere, by
$$
\frac{\partial f}{\partial y}
$$
 is
not continuous when $y \le d$

Let R be the
rectangular defined by
rectangular 15y 63.
-15x51 and 15y 63.
Then, f and
$$
\frac{\partial f}{\partial y}
$$
 are
then, f and $\frac{\partial f}{\partial y}$ are
continuous in R.
Corbaryous in the

$$
\begin{array}{ccc}\n\sum_{D_J} & \text{Yicar} & \text{or} \\
\int_{D_J} & \text{Yicar} & \text{or} \\
\int_{D_J} & \text{Poisson} & \text{or} \\
\end{array}
$$

 $V = Y, y(z) = 0$
x $\frac{dy}{dx} = y, y(z) = 0$ $(X_{o}/Y_{o})=(2,0)$ $x \frac{dx}{dy} = y$ $y(z) = 0 \quad 4$ $\frac{dy}{dx} = \frac{y}{x}$ This can be re-written as $\overline{d\overline{x}}$ his can be xe^{-1}
Let $f(x,y) = \frac{y}{x}$. $x = 0$ Then, $\frac{\partial f}{\partial y}=\frac{1}{x}$. Note that f and $\frac{\partial f}{\partial y}$ are continuous $\begin{array}{ccc}\n-9) & 16 \\
-9) & 16\n\end{array}$
 $A \text{ be } 16 - \text{which as } \frac{dy}{dx} = \frac{9}{x}$
 $(x,y) = \frac{9}{x}$
 $(x,y) = \frac{9}{x}$
 $(x,y) = \frac{9}{x}$
 $(x,y) = \frac{9}{x}$
 $(x=0)$
 $x=0$
 $x=0$
 $x=0$ everwhere except when ^X ⁼ 0. Let ^R be the rectangle given by $1\leq x\leq 5$, given by $1 \leq x \leq 5$, in R -Ky $x = 0.$
 $x = 0$ Then, by Picand's theorem there exists a unique solution there initial value problem
to the initial value problem On some interval containing $x_{0} = 2$. tr a unique solution
aftial vulue problem
interval containing Xo=2.

 $y' - y = x, y(1) = 2$ (1)(2)

y' - y = x, y(1) = 2

We have

y' = x + y, y(1) = 2 $(x_{0},y_{0})=(1,2)$ $y = x + y$, $y(1) = 2$ Let $f(x,y) = x+y$. Then, $\frac{\partial f}{\partial y}=1$ f and $\frac{\partial f}{\partial y}$ are continuous everywhere. $\frac{1}{2}\frac{1}{2}$ $\begin{array}{ccc} 1 & a \land a & \overline{a} \overline{g} & \overline{g} & \overline{g} & \end{array}$ we the entire $xy-p$ lane. Let K ne
Then, f und $\frac{\partial f}{\partial y}$ o
Continuous in R. hen,
- an
- et
Lont $sinve$
 $sinwe$
 $cose$
 $sinwe$ Lontinuous in R.
Then, by Picards theorem there exists ^a unique solution to the initial some value problem on χ _o= \. olution to the internet
ralue problem un son
interval I containing

①(a)	
(4-y ²) y ¹ = x ² , y ¹ = 0	
This can be re-writhta	
y' = $\frac{x^2}{4-y^2}$, y ¹ = 0	
Then,	$\frac{x^2}{2!} = x^2(4-y^2)^{-1}$
Then,	$\frac{x^2}{2!} = x^2(4-y^2)^{-1}$
and,	$\frac{3!}{2!} = -x^2(4-y^2)^2(-2y)$
and,	$\frac{3!}{2!} = -x^2(4-y^2)^{-2}$
and,	$\frac{3!}{2!} = 2$
and,	$\frac{3}{2!} = 2$
and,	$\frac{3}{2!} = 2$
even, and,	$\frac{3}{2!} = 2$
even, we get what by	
Let, R be defined by P	
Then, f and, by P	
Then, f and, by P	
From, R. So, by P	
Then, f and, by P	
and, f and f and g and cofin's	
1	
1	
1	
1	
1	
1	
2	
2	

Let y = Cx. Then, y'⁼ ^c Thus, $xy' = xc = y$. SO_q y = $C \times$ xc=y.
solves xy'= y. $|S(b)|$ $\frac{2(6)}{\epsilon}$
Let $f(x) = x$ of $(c=1$ from above) Let $f_2(x) = 2x + (c-2)$ from above) we know that f_1 and f_2 Then from part (a) both solve Xy $\prime = y$. noth solve $xy - y$
Further, $f(c) = 0$ and $f_z(c) = 2 \cdot 0 = 0$. Thus, f, $\begin{array}{ccc} \n(a) - 0 & \dots & \dots & \dots \\ \n0 & 1 & 1 & 1 \end{array}$ initial value problem $\begin{aligned} \int \text{value } P \text{(s} b^{1} \text{e}^{m} \\ \times y' &= y \text{ y } y^{1} \text{y}^{1} \text{$ Thus, Thus, this initial value problem does
not have a vnique solution.

 $|(3)(a)|$

2 Let $y = c \times$. Then, $= 2CX$ Thus, $X\frac{dy}{dx} = x(2cx) = 2cx^2 = 2y$
Thus, $X\frac{dy}{dx} = x(2cx) = 2cx^2 = 2y$ Z \int_{Ω} , \int_{Ω} , \int_{Ω} = $C \times$ S_{\circ} (2CX) = 2CX = 4J
 S_{\circ} lues X_{\circ}° X X_{\circ}° $(3)(b)$ $Let f(x) = 3x^2 + (c = 3 + cm)$ above) Let $f_2(x) = -x^2 + (c = -1)$ from above) Let $f_z(x) = -x$ and f_z
Then from partial we know that f_1 and f_z b oth solve $x\frac{dy}{dx} = 2y$. noth solve λdx
Further, $f(c)=3(c)^2=0$ and $f_2(c)=0$
Further, $f(c) = 3(c)^2 = 0$ and $f_2(c) = -1$ $0^2 = 0$ Thus, f, $\begin{array}{ccc} \n(a) - 3107 & b & c \\
 a & b & c \\
 c & d & d\n\end{array}$ initial value problem $\int \frac{1}{a} \int \frac{1}{a} e^{-\frac{1}{2} \left(\frac{1}{a} \right)^2} e^{a} \times \frac{dy}{dx} = 2y$, $y(0) = 0$. Thus, Thus, this initial value problem does
not have a vnique solution.