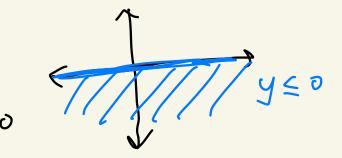
()(a)

$$\frac{dy}{dx} = y^{2/3}$$
, $y(0) = 2$ $(x_0, y_0) = (0, z)$

tere
$$f(x,y) = y^{-1/3}$$

 $\frac{\partial f}{\partial y} = \frac{2}{3}y^{-1/3} = \frac{2}{3}\cdot \frac{1}{y^{1/3}}$

Note that
$$f$$
 is continuous
everywhere, but $\frac{\partial f}{\partial y}$ is
not continuous when $y \le c$

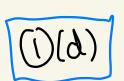


Let R be the
Let R be the
rectangle defined by

$$-1 \le x \le 1$$
 and $1 \le y \le 3$.
Then, f and $\frac{\partial f}{\partial y}$ are
(ontinuous in R.
(ontinuous in R.

 $(X_{0},Y_{0}) = (2,0)$ (1)(6) $x \frac{dy}{dx} = y, y(z) = 0$ This can be re-written as $\frac{dy}{dx} = \frac{y}{x}$ Let $f(x,y) = \frac{y}{x}$. x=0 Then, $\frac{\partial f}{\partial y} = \frac{1}{x}$. Note that f and of are continuous everwhere except when x=0. X=0 Let R be the rectangle given by $|\leq X \leq 3, -|\leq y \leq |$. Then, f and of are continuous in R. Then, by Picand's thronem there exists a varique solution to the initial value problem On some interval containing Xo=2.

y' - y = x, y(1) = 2(x,y)=(1,Z) We have y' = x + y, y(1) = 2Let f(x,y) = x+y. Then, $\frac{\partial f}{\partial y} = 1$ everywhere. f and of are continuous Let R be the entire xy-plane. •(1,2) Then, f und <u>of</u> are Continuous in R. Then, by Picards theorem there exists a unique solution to the initial Value problem un some interval I containing Xo=1.



$$(4-y^{2}) y' = x^{2}, y(o) = 0$$
This can be re-written

$$y' = \frac{x^{2}}{4-y^{2}}, y(o) = 0$$

$$(x_{0},y_{0}) = (0,0)^{1}$$
Then,

$$f(x,y) = \frac{x^{2}}{4-y^{2}} = x^{2}(4-y^{2})^{-1}$$
and

$$\frac{\partial f}{\partial y} = -x^{2}(4-y^{2})^{2}(-2y)$$

$$= \frac{2yx^{2}}{(4-y^{2})^{2}}$$

$$f and \frac{\partial f}{\partial y} are continuous$$

$$f and \frac{\partial f}{\partial y} are continuous$$

$$everywhere except when y=\pm 2.$$

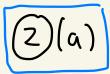
$$y=-2$$

$$everywhere except when y=\pm 2.$$

$$y=-2$$

$$everywhere except when y=\pm 2.$$

$$y=-2$$
Then, f and $\frac{\partial f}{\partial y}$ are continuous $y=-2$.
Then, f and $\frac{\partial f}{\partial y}$ are continuous $y=-2$.
Then, f and $\frac{\partial f}{\partial y}$ are continuous $y=-2$.
Then, f and $\frac{\partial f}{\partial y}$ are continuous $y=-2$.
Then, f and $\frac{\partial f}{\partial y}$ are continuous $y=-2$.
Then, f and $\frac{\partial f}{\partial y}$ are continuous $y=-2$.
Then, f and $\frac{\partial f}{\partial y}$ are continuous $y=-2$.
Then, f and $\frac{\partial f}{\partial y}$ are continuous $y=-2$.
Then, f and $\frac{\partial f}{\partial y}$ are continuous $y=-2$.
There exists a unique solution to the initial value problem on some interval containing $x_{0}=0$.



Let y=cx. Then, y'=c Thus, xy' = xc = y. So, y=cx solves xy'=y. (2)(b)Let f,(x)=x + (c=1 from above) Let f2(X)=ZX & (C=2 from above) Then from part (a) we know that f, and fz both solve xy=y. Further, $f_1(0) = 0$ and $f_2(0) = 2 \cdot 0 = 0$. Thus, f, and fz both solve the initial value problem xy' = y, y(0) = 0. Thus, this initial value problem does not have a vnique solution.

(3)(a)

Let $y = cx^2$. Then, := zcx Thus, $X \frac{dy}{dx} = X(2cX) = 2cX^2 = Zy$ So, y=cx² solves x dy = 2y (3)(b) Let $f_1(x) = 3x^2 + (c = 3 \text{ from above})$ Let $f_2(x) = -x^2 + (c = -1 \text{ from a bo-e})$ Then from part (a) we know that f, and fz both solve $x \frac{dy}{dx} = 2y$. Further, $f_1(0) = 3(0)^2 = 0$ and $f_2(0) = -0^2 = 0$ Thus, f, and fz both solve the initial value problem $x \frac{dy}{dx} = 2y$, y(o) = 0. Thus, this initial value problem does not have a vnique solution.